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LETTER TO THE EDITOR 

Schrodinger operators in spaces of multifunctions defined 
in multiply-connected domains 

V Zh Sakbaevts and P E Zhidkov$ll 
t Moscow Institute of Physics and Technology, 141700 Dolgop~dniy (Moscow region), Russia 
t Bogoliubov Thearetical Laboratory, Joint Instimte for Nuclear Reseanh, 141980 Dubna 
(Moscow region). Russia 

Received 24 Augusf 1995 

Abstrad. Certain problems of quantum physics (for example, the Aharonov-Bohm effect) lead 
to the eigenvalue problem for a Schriidinger operator with wave multifunctions. For a multiply- 
cnnnected configuration space with a simplest topology (for example, for a n-dimensional torus) 
this problem was considered by several anthors. In the present paper, by using rigorous 
mathematical methods we investigate this problem on an arbitmy multi-dimensional smooth 
manifold (possibly, with a boundary). We carefully define the concept of multifunctions, then 
we introduce spaces of these objects similar to LZ and Hi'. Finally. we present a specwl 
theorem on the existence of a self-adjoint extension of a Schriidinger operator in the inmduced 
spaces which implies the completeness of the system of eigenfunctions of this operator in the 
considered functional spaces. 

1. Introduction 

Certain problems of quantum physics require the study of a Schrodinger equation in spaces 
of multifunctions. For example, this occurs in the known Aharonov-Bohm effect [l]. In 
this case, it is known that calculations with multifunctions and without the potential of 
the magnetic field, and calculations with usual (one-valued) wavefunctions and with the 
magnetic potential, give identical results. In view of this, it seems natural to consider wave 
multifunctions in certain cases. Earlier, working in this direction (using the multifunction 
approach) only configuration spaces with the simplest topology were considered (for 
example, the problem has been treated when the confipation space is a torus, see [2]). 

We consider the general case of an arbitrary connected smooth (of the class Cm) oriented 
Riemannian manifold M, dimM = d, with a smooth boundary aM which may be empty. 
We carefully define multifunctions on M by analogy with the simple cases above, introduce 
spaces similar to L.2 or HA of these objects and prove the existence of a self-adjoint extension 
of a Schrodinger operator in these spaces. An approach to the definition of multifunctions, 
similar to our approach but without mathematical accuracy, is contained in the monograph 
[3]. Finally, we do not touch upon delicate questions of the Floquet theory (see [2]). 

2. Multifunctions 

Let C be the set of continuous piecewise smooth maps from [O, 11 into M ;  xo E M be a fixed 
point; CO be the subset of the set C, CO = { y  E Cly(0) = xo];  CI = [ y  E Coly(1) = xo}. 

'$ E-mail address: SAKBAEV@'lTIEOR.JINRC.DUBNA.SU 
11 Email address: ZHIDKOV@THEQRJINRC.DUBNA.SU 
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For any two paths y ~ ,  E C satisfying yl(0) = yz( 1) we ineoduce their product yl O M  = y 
where y ( t )  = yz(2t) if t E [O, 41 and y ( t )  = n ( 2 t  - 1) for i E [i, 11. By analogy, 
y - ' ( t )  = y(1- t ) .  As usual, we call two paths y1 and yz from C1 equivalent if there exists 
acontinuoushomotopyu(s,t), wheres,t E [O,l],suchthatu(O,t) = y 1 ( t ) , u ( l , t )  = yz(t) 
and u(s, 0) = a(s, 1) = XO. We denote the set of equivalence classes of paths by K. Then, 
in the set K one has a natural operator of multiplication: if kl ,  kz E K and yl E kl ,  yz E kz, 
then kl o k2 is the class k E K contaifiing the path y1 o y2. 

Since M is a Riemannian manifold, M is a metric space with a distance d ( x , y )  
(x ,  y E M ) .  Then, one can introduce a distance in the set C ,  making it a metric space, by 
the rule 

P ( Y I ,  YZ) =f~~ ,zz&d(~~W7 M@)) + f ~ ~ l S ~ ~ , d ( ~ i ( ~ ) ~  Mt)). 

(Axioms of the metric space can easily be verified.) Further, by standard arguments, for 
any yo E C1 there exists 6 > 0 such that if p(y0, y )  -= E for a path y E C1, then y is 
equivalent to yo. 

Defiition I .  We say that a real function 0 defined on CO is admissible iff 
(i) B(y )  = 0 for any path y E C1 equivalent to the trivial one yo@) xo: 
(ii) e ( n  0 M) = W t )  +@(MI for any n, M E CI. 

Remark I .  One can easily verify thatthere exists a non-hivial admissible function. Indeed, 
taking a closed smooth differential 1-form o = E:=, f i ( x )  dxi (so that d o  = 0) and setting 
for any y E CO 

w = S y o  

we obtain a function 0 satisfying definition 1. 

Defrnition 2. We call a complex function f defined on CO the multifunction defined on M 
iff for any x E M and any y ~ .  yz E CO such that n(l) = yz(1) = x one has 

f(y,) f(y,)e'~(K'on). 

Let us show that there exist non-trivial multifunctions. Let U c M \ aM be an open 
card diffeomorphic to the unit ball B = Bl(0) = Iz E Rdllzl < 1) and fo be a complex 
function defined on M with a support in U. For any y E CO, y ( l )  $! U we set f ( y )  = 0. 
Take arbitrary x1 E U and fix a path M E CO : yo(1) =XI. Let y E CO be an arbitrary path 
joining xo with x E U .  We set 

f(y) = fo(y(l))e'~'Y~'o~-~~Y) 

where U is an arbitrary path from C joining X I  with y(1) and contained in U. One can 
easily verify that f ( y )  is a well-defined multifunction. 

Operations of addition of multifunctions and multiplication of a multifunction by a 
usual (one-valued) function have been introduced naturally (f(y) = f l ( y )  + f*(y) and 
g ( y )  = ar(y(l))f(y) where f, fl, f~ and g are multifunctions and CY is a onevalued 
function). Further, the complex adjoint function to a multifunction f is defined pointwise, 
too, and it is clear that this is a multifunction with respect to the admissible function 
el = -e. 
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3. Continuity and differentiability of multifunctions 

Let yo E CI. Since there exists E > 0 such that y E CI is equivalent to yo if 

a multifunction f as a function of y satisfying (1) is the usual (one-valued) function of 
x = y(1)  E M, i.e. locally any multifunction is a function of points of the manifold M. 
(Indeed, if y~ and y2 are paths from CO satisfying (1) and yl(1) = yz( l), then these two paths 
are homotopic, hence f ( n )  = f ( y 2 )  and therefore f is a function q5 only of x = %(I).) 
Using these arguments, we inwoduce the following. 

Definition~3. A multifunction f is called continuous in a point M (resp., infinitely 
differentiable in M \ a M )  if there exists E z 0 such that the corresponding function q5 
is continuous in x in a neighbourhood of thk point ~ ( 1 )  (resp., each function q5 is infinitely 
differentiable in a neighbourhood of the point xo = yo(1) 6 aM).  

Definition 4.  Let S be the set of all x E M such that for a given continuous multifunction 
f there exists a path y. y(1)  = x ,  such that f ( y )  # 0 and let 3 be the closure of the set 
S. we call S the support of f (S =.supp(f)). 

Definition 5. 
the support of each satisfying 

P(Y0. Y )  < E (1) 

By Dam we denote the set of infinitely differentiable in M\aM multifunctions, 

dist(3, a M )  > 0 
where dist(A, B )  = inf,Ea.y.Bd(x, y ) .  

4. The space of square-integrable multifunctions 

Take arbitrary multifunctions f and g. We set ( f i ) ( y )  = f ( y ) j ( y )  where j is the complex 
adjoint multifunction tog. We state that fg is a usual (one-valued) function on M depending 
only on‘x = y(1). Let us prove this statement. 

Take arbitrary y 1 . n  E CO such that yl(1) = ~ ( 1 )  = x E M. We should prove 
that f ( y ~ ) j ( y ~ )  = f ( y ~ ) j ( y z ) ,  only, but according to the above results (see section 2) 
f ( y 1 )  = e’@f(n) and j ( y1 )  = e-”g(n) for some 0, and thus the statement is proved. 

One can verify that the expression l \ f \ l =  (JM f f i4  is a norm in the space DF. Using 
this fact, we introduce the following. 

Definition 6. We denote by F2 the completion of the space DO“ with the norm 11.11. In fact, 
F2 is a Hilbert space and DO” is a dense linear subspace in this space. By (., .) we denote 
the scalar product in the space F2 ((f, g) = J,(fj)(x)). 

5. Laplacian 

Let U be an open card on M with a coordinate function q5 : B + U where B is a d-  
dimensional open ball from Rd so that @(z) = x E M and z = (ZI. ..., z d )  E B .  For 
smooth in U usual (one-valued) functions f the known Laplace-Beltrami operator takes 
the following form: 
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where gi.j(z) and g’.j(z) are, respectively, covariant and contravariant components of the 
Riemannian tensor. It is essential to note that if M is a domain in an Euclidian space with 
the corresponding metric then the Laplace-Beltrami operator becomes the usual Laplacian. 
Therefore, it is natural to give the following. 

Dejinirion 7. Let f E DO”, let U be the above open card on M and yo E CO be a path 
such that yo(1) = xo E U .  Then, since locally f is a function @ ( x )  of points x E M from 
a neighbourhood of the point a, we set 

W(V) = A@@) 
for all paths y sufficiently close to yo. We call the operator A the Laplacian or the Laplace- 
Beltrami operator. One can easily verify that Af(y) is a multifunction in the sense of 
definition 2 with the same admissible function.@. 

Lemma 1. The operator -A is symmetric and non-negative in the space DF equipped by 
the scalar product from Fz. 

Proof. As above, for any q5,  rl. E DF q5(x)+(x) is a usual (one-valued) function on 
M. Let R = supp($) U supp(@). Then, R is a compact set and dist(R; aM) =. 0. Let 
U,, . . . , U1 be its covering by open in M cards diffeomorphic to B and let q, . . . , q be 
smooth (uk are infinitely differentiable) non-negative functions defined on M such that 
supp(uk) c Uk, k = and xi=, U&) = 1 for all x E R. Then, one obtains (because 
the Laplacian is symmetric on usual functions) 

. .  

I I 1 

(A@, 9)  = ( A h ,  @nJ = (A&, ’Jm) = (dkv A’Jm) 
k.m=l k,m=l k.m=l 

I 
= ( h a  A@m) = (q5, A@) 

k.m=l 

where 6; and ‘J,,, are usual (one-valued) functions with supports in U, and U, n U,,,, 
respectively, which are obtained by fixing any y~ E CO (k = U) such that yk(1) E U; 
and raking 6k(x)  = $!&k 0 YW), iJm(x) = @m(qk 0 I*) for x = rlr(1) where m(0) = yk(Ur 
qk(t) E U; n U, and qk E C. By analogy, we introduce functions 6 J ( x )  = + ( q k  o yk)  
for x = q k ( l )  E Uk. Thus, the Laplacian is symmetric. 

BY analogy, 

where Gk,,,, is the pre-image of U, n U, and we mean that the integrand is non-zero only 
in uk n U,. Now, to prove lemma 1, it suffices to prove that J = 0. Not writing the whole 
expression for, J (one can easily do it), we prove that 

Then, by analogy, one can repeat this proof for all other terms in the expression for J 
showing the equality J = 0. 
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To prove (3), we observe that the expression ($$J)(z) generates a usual (one-valued) 
- 

smooth vector field on M. Therefore, at any point z the expression 

is a scalar product of two vectors. Hence, 

and, thus, lemma 1 is proved. 

6. Spectral theory 

Let V ( x )  2 -Vo be a real continuous function on M where VO = const. independent of 
n E M .  Consider the operator H = -A + V ( x ) .  By the above arguments, this is a bounded 
from below symmetric operator on 07. Therefore, it has a self-adjoint extension in Fz 
with the same lower boundary. 

If the manifold M is compact, we can present a more complete information about the 
operator H. III fact, in this case H has a self- adjoint extension with a discrete spectrum, 
only, which consists of eigenvalues h, > 0 (n = 1,2,3,  . . .) monotonously converging to 
+CO, and to any A, there corresponds a finite number of orthonormal eigenfunctions; two 
eigenfunctions corresponding to non-equal eigenvalues A,, and h, are orthogonal in Fz. 
To prove this statement, it suffices to prove that there exists a > 0 such that the operator 
(H + uZ)-l is compact, positive and symmetric (here Z is the identical operator). 

Let HI = &(M) be the completion of the space Dr with the norm [[fill = 
((H + uZ)f, f)i where a = VO + 1. 

Lemma 2. Let M be a compact manifold. Then, the space HI is compactly embedded in 
F2. 

Proof. First, since I[ f 111 > l l f l l  for all f E Dr, the space HI is continuously embedded 
into Fz for the manifold M without the requirement of its compactness. Let M be a compact 
manifold. Fix an arbitrary finite covering UI , . . . , U; of M by open cards each of which is 
diffeomorphic to the ball B or the half-ball B1 = {z E BI ZI > 01. Let q, . . . ,U[ be the 
corresponding smooth partition of unity (so that cf=, q ( x )  = 1 for all x E M, q ( x )  2 Q 
and supp(ui) c Ut). Further, we take arbitrary paths yi E CO leading to some xi E U;. 
As in the proof of lemma 1, let f&) (x  E M) he (one-valued) functions in Uk obtained 
by taking paths PX c Uk, &(O) = , y ,  &(l) = x and setting f&) = f(@k o n). Then, 
according to formula (2) (where J = 0), one has for f E Dam, I[ fill greater or equal to 

Obviously, there exists r > 0 such that the pre-images Ek,m of the domains 

~ k . ~  = ( x  E uk n umIuk(x) > r, um(x) > r~ 

cover M. Therefore, l[flll 2 Cl[&(z) l l~y~, , ,  for all k, m. Hence, if R is a set of fimctions 
bounded h the norm of HI, then for all k ,  m = fl the sets R R . ~  of corresponding functions 
f&) are compact in &(Ek,m). This easily implies the statement of lemma 2. 
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Consider the equation 

( H  + ~ I ) u  = f E Fz 

(4 u)1 = (f, U) 

(4) 

(5) 
for all U E H I .  In view of the equality (5). for any f E Fz there corresponds a unique 
U E H I  such that the equality (5) takes place for all U E H I ,  and, in addition, 

IlUll l  < Cllf II (6) 

with the unknown function U E HI. Multiplying(4) by U E HI, we find 

(for proofs, see [4]; they are based on the usual technique of proving the existence and 
uniqueness of a generalized solution to a linear elliptic equation). 

By B we denote the operator mapping arbitrary f E FZ into U E HI where U satisfies 
(5). According to (6) and l e m a  2, E is a compact operator in Fz. 

Further, since for U ,  U E HI  one has 
-- 

(Bu,  U)' = (U, U )  = ( U ,  U )  = (Bu, U)! = (U, Bu)i (7) 
the operator B is self-adjoint in H l .  By analogy, B is a non-negative operator in H I .  

To prove that B is a compact operator in H I ,  consider an arbitrary bounded set R c H I .  
In particular, any sequence { f n ]  c R contains a subsequence (f,) strongly converging in 
Fz. Therefore, the sequence Bf,, strongly converges in H l ,  and the compactness of the 
operator B in H I  is proved. 

According to the Hilbert-Schmidt theorem, there exists an orthonormal basis in H ,  
consisting of eigenfunctions of the operator B with corresponding eigenvalues An > 0 of 
finite multiplicities and there exists a monotonous limit limn-,mAn =~O. We denote the 
corresponding eigenfunctions of the operator B by U .  accepting that each eigenvalue h, 
appears in the sequence (An] so many times which is its multiplicity. 

Then, obviously the space FZ is an analogue of the space Lz, and, since we consider 
applications of OUT construction in quantum mechanics, we need to prove a spectral 
expansion for the operator H in Fz. However, this result follows from the above one. 
Indeed, since U ,  E Fz for all n and since the space HI is dense in Fz, one has that {U,] 
is a basis in FZ which is orthogonal by the equality (7). Finally, if Bu = 0 for U E Fz, 
then according to (7) one has ( U .  U) = 0 for all U E H I ,  hence U = 0. Thus, there exists 
an operator E-' mapping the image of the operator B into Fz. Further, since for U E Dr 
B-'u = ( H + a l ) u  (i.e. if U E Dr, B-lr t is  determined and coincides with (H+aZ)u), the 
operator B-I is self-adjoint in FZ and it is a self-adjoint extension of the operator ( H  +a[).  
Thus, we have proved the following result: 

Theorem I .  Let the manifold M be compact. Then, the operator H with the domain Dr 
considered in FZ has a self-adjoint extension with only a discrete spectrum [A;1] (here 
limndm A;' = +w) where each eigenvalue A;' is of a finite multiplicity. 

A brief variant of the paper (without proofs) will be published in [5]. 
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